
Progressive Computation of the Min-Dist
Optimal-Location Query

Donghui Zhang Yang Du Tian Xia
College of Computer and Information Science

Northeastern University
Boston, MA 02215

{donghui, duy, tianxia}@ccs.neu.edu

Yufei Tao
Dept. of Computer Science and Engineering

Chinese University of Hong Kong
New Territories, Hong Kong

taoyf@cse.cuhk.edu.hk

ABSTRACT
This paper proposes and solves the min-dist optimal-location
query in spatial databases. Given a set S of sites, a set O
of weighted objects, and a spatial region Q, the min-dist
optimal-location query returns a location in Q which, if a
new site is built there, minimizes the average distance from
each object to its closest site. This query can help a franchise
(e.g. McDonald’s) decide where to put a new store in or-
der to maximize the benefit to its customers. To solve this
problem is challenging, for there are theoretically infinite
number of locations in Q, all of which could be candidates.
This paper first provides a theorem that limits the number
of candidate locations without losing the power to find ex-
act answers. Then it provides a progressive algorithm that
quickly suggests a location, tells the maximum error it may
have, and keeps refining the result. When the algorithm
finishes, the exact answer can be found. The intermediate
result of early runs can be used to prune the search space
for later runs. Crucial to the pruning technique are novel
lower-bound estimators. The proposed algorithm, the effect
of several optimizations, and the progressiveness are exper-
imentally evaluated.

1. INTRODUCTION
Spatial databases play more and more important roles in

applications such as corporation decision-support systems.
For instance, an interesting query that the McDonald’s Cor-
poration may ask again and again is: “what is the optimal
location in a given region to open a new McDonald’s store?”
Here an optimal location should be a location which max-
imally benefits the customers, if a new store is built there.
There may be multiple definitions of the optimal location.

Our earlier work [2] defined the optimal location as a loca-
tion that maximizes its influence. The influence of a location
is the number of customers that consider the new location
as their nearest McDonald’s store if built. For this reason
we name that problem as the max-inf optimal location.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06,September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

We first illustrate the limitations of the max-inf optimal
location, then propose and solve the min-dist optimal lo-
cation which is more practical. Furthermore, following the
practice of [2] we focus on the L1 distance, which is the
shortest driving distance if all city roads are either horizon-
tal or vertical. Therefore d(o1, s1) stands for the L1 distance
between o1 and s1.

max−inf optimal location

 1
 o

 5
 o

 3

 o
 6

 o
 2

 o
 4

 o
 7

 o
 8

 s
 1

 o

Figure 1: The max-inf optimal location maximizes
the influence of the new location.

Figure 1 illustrates a max-inf optimal location. Here ob-
jects o1 through o8 represent eight customer addresses, and
site s1 stands for an existing McDonald’s store. If a new
McDonald’s store is built at the illustrated max-inf optimal
location, it will benefit the maximum number of customers:
o1, o2, o3, and o4. However, intuitively this is not a very
good result. First, it may not be a good choice to build
a new McDonald’s store next to an existing one. Second,
there are two customers (o7 and o8) that still need to drive
a long distance to visit any McDonald’s store.

min−dist optimal location

 1
 o

 5
 o

 3

 o
 6

 o
 2

 o
 4

 o
 7

 o
 8

 s
 1

 o

Figure 2: The min-dist optimal location minimizes
the average distance from each object to its nearest
site.

Instead, if we build a new McDonald’s store at the min-
dist optimal location as illustrated in Figure 2, even though
it benefits fewer customers (two versus four), it is intuitively
better for the following reason: the average distance from a
customer to her nearest McDonald’s store is smaller.

This paper focuses on finding a min-dist optimal location,
which minimizes the average distance from each object (e.g.

643

residential buildings) to its nearest site (e.g. McDonald’s
stores), if a new site is built at this location. Furthermore,
an object is associated with a weight (e.g. the number of
customers living at the same apartment building), and we
aim at minimizing the weighted average distance (e.g. the
average distance from each customer, instead of apartment
building, to the nearest McDonald’s). The problem is for-
mally defined as follows.

Definition 1. Given a set S of sites, a set O of objects
with positive-integer weights, and a rectangular query region
Q, the Min-Dist Optimal Location (MDOL) is a location l
in Q that minimizes:

AD(l) =

∑
o∈O dNN(o, S ∪ {l}) ∗ o.w∑

o∈O o.w
(1)

Here AD(l) shows the weighted average distance from
each object in O to its nearest site in S, including a hypo-
thetical new site at l. And dNN(o, S ∪ {l})) is the distance
from o to that nearest site. Furthermore, o.w is the weight
of object o. Once again, throughout this paper whenever we
say distance we mean L1 distance.

To find a min-dist optimal location is challenging, even
though in Section 3 we have a way of computing AD(l)
which measures how good a candidate location l is. The
reason is, theoretically there are infinite number of locations
in the query range Q. It may seem that all these locations
are candidates.

In Section 4 we propose two theorems which show that
we only need to examine a finite set of candidate locations,
which are the intersections of some selected vertical lines and
horizontal lines. In other words, if we pick the intersection
point with the smallest AD(·), it is guaranteed to be an
optimal location.

However, the straightforward solution, which computes
AD(·) for all such intersection points, is not efficient. The
reason is that there may be too many (although finite) such
intersection points. Section 5 proposes a progressive algo-
rithm MDOL prog. The algorithm partitions the query
range Q into a few cells (by using some of the vertical and
horizontal lines), and calculates AD(·) for the corners of
these cells. It is guaranteed that any candidate location,
whose AD(·) is not computed yet, is in some unpruned cell
and in turn can be found if the cell is partitioned. Among
the cell corners, the one with the smallest AD(·) can be re-
ported as a temporary optimal location, and the result can
be continuously refined.

One key contribution of this paper is that it can calcu-
late a lower bound of AD(·) of all locations in a given cell.
This ability brings two benefits. First, along with the tem-
porary optimal location, we can also report the maximum
error. This allows the user to abort the calculation if the
error is considered to be small enough. More importantly,
it is possible to prune a whole cell (i.e., including the non-
examined candidate locations in the cell). Two types of
lower bounds are proposed, namely, the data-independent
lower bound (Section 5.2) and the data-dependent lower bound
(Section 5.3).

Empowered by the ability to calculate lower bounds (for
cells), the algorithm MDOL prog chooses the cell(s) with
the smallest lower bounds and partitions them. Along with
the partitioning, more candidate locations are revealed and

therefore a better temporary optimal location may be found,
with a smaller AD(·). On the other hand, the minimum
lower bound of unprocessed cells keeps increasing. When the
two ends meet, the exact solution of the optimal location will
be found. Section 5.5 studies how to select cells to partition
and how to partition each cell.

The key contributions of the paper are summarized below.

• We propose the concept of min-dist optimal-location
query, which is more practical than the existing max-
inf optimal-location query [2].

• We present a way of computing AD(l) which measures
how good a candidate location l is (Section 3).

• We prove that the number of candidate locations is
finite, and we have a way of computing them (Sec-
tion 4). Here, by introducing the concept V CU(R), we
can further limit the number of candidate locations.

• We provide a progressive algorithm that computes the
min-dist optimal location (Section 5). For pruning
purposes, it utilizes novel lower-bound estimators for
AD(·) of all locations in a rectangular cell. A batch
cell-partitioning method is presented which partitions
multiple cells together in a systematic and reasonable
way.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 discusses how to compute
AD(l) for one candidate location l. Section 4 limits the
number of candidate locations. The most crucial part is Sec-
tion 5, which proposes the algorithm MDOL prog. Perfor-
mance results appear in Section 6. Finally, Section 7 con-
cludes the paper.

2. RELATED WORK
The max-inf optimal location query was proposed in [2],

where the problem was simply called optimal location query.
As we said, it aimed at finding a location with maximum
influence, where the influence of a location is the total weight
of objects that are nearer to l than to all sites in S. These
objects are called the RNNs of l, where RNN stands for
reverse nearest neighbor. In [2] we first reduced the problem
to the problem of finding a location which is contained by
the most number of squares, then proposed three algorithms
to solve it. We found that the VOL-tree method is the most
efficient one. Unfortunately, those solutions do not apply
to the newly proposed and more practical problem in this
paper.

Since we also utilize the RNN concept when computing
AD(l), let’s briefly review it. The RNN problem was intro-
duced by [4]. There are two variations of the RNN query:
the monochromatic case [8, 10], and the bichromatic case
[9]. We use the bichromatic version of the RNN concept,
where there are two datasets (O and S) involved.

To compute the RNNs of a location l, Stanoi et al. [9] pro-
posed an algorithm that dynamically constructs the Voronoi
cell enclosing l. The Voronoi cell of l is a polygon, such that
an arbitrary point is inside the polygon if and only if it is
closer to l than to any other site in S. To compute this
Voronoi cell, only sites in S are needed. Then, set O is
probed to find the objects inside the Voronoi cell, which are
the RNNs of l. Although there exists a large collection of

644

computational-geometry work on computing Voronoi cells
[1], the solution in [9] is novel in the sense that it only ex-
amines a small fraction of the sites in S which are close to
l. However, [9] applies on the L2 metric only.

For the L1 metric that this paper addresses, we could
utilize the computational geometry solution [5]. And similar
to [9], we develop an algorithm that computes the L1-metric
Voronoi cell without examining all sites in S.

• Comparing with Facility Location Problem

Readers familiar with “operations research” may wonder
whether the proposed MDOL operation is a solved instance
of the facility location (FL) problem [4, 1]. The answer is
negative. In the context of optimizing the locations of new
McDonald’s, for example, the FL-version of the problem is
as follows: given a set X of pre-decided locations, the goal
is to find a subset X ′ of X, which minimizes

∑
o∈O dNN(o, X ′) ∗ o.w∑

o∈O o.w
.

where the semantics of o, O, dNN(·), and o.w are identical
to those in MDOL search (Definition 1). The above problem,
however, differs from MDOL retrieval in three important
ways. First, the FL problem outputs potentially multiple
locations (i.e., set X ′), as opposed to only one location in
an MDOL query. Second, FL knows in advance a finite
set of candidate locations (i.e., set X), whereas in MDOL
search we are given a rectangle Q, inside which all points
may be candidate answers (i.e., an infinite number of them).
Finally, FL disregards the existing McDonald’s restaurants,
which actually play an imperative role in the formulation of
MDOL.

• Comparing with k-Medoid/Median Problem

Given a set O of object locations (e.g. customers), the
k-medoid query [7] finds a set of medoids R ⊆ O with car-
dinality k that minimizes the average distance from each
object o ∈ O to its closest medoid in R. The k-median
query [3, 6] is a variation, where we find k locations called
medians, not necessarily in O, which minimize the average
distance (from each object o ∈ O to its closest median).

However our problem is different from both of them. A
fundamental difference is that the existing problems do not
assume a set S of existing sites (e.g. McDonald’s), but we
do. If a city already has at least one McDonald’s store, and
some locations should be chosen for new McDonald’s stores,
existing work does not apply. In our problem, we want to
find an optimal location l, and the nearest neighbor of each
residential address is then taken from the UNION of S and
{l}, i.e., every existing site will be considered in each nearest
neighbor selection.

Furthermore, while the facility location problem and the
k-median/k-medoid problems are all NP-hard, our problem
is not. Our work is a database query-processing paper in-
stead of a theory paper. We find exact answers (under the
constraints given in Definition 1), not approximate answers
with proved approximation ratio (commonly used to tackle
NP-hard problems). Even though there may seem to have
infinite number of locations in the query region, according
to our Theorem 2 we only need to check a finite number
(quadratic to the number of objects) of candidate locations

in order to get the exact answer. A straightforward solu-
tion is to check all these candidates. The solution is clearly
polynomial. NP-hardness is irrelevant here.

In the database community, however, such a straightfor-
ward algorithm is too expensive because the data set is
typically large. We provide a carefully-designed, theorem-
supported and experimentally-evaluated progressive algo-
rithm. In particular, the checking of most candidate lo-
cations can be pruned.

To deal with large data sets, we rely on spatial index struc-
tures, e.g. to efficiently retrieve the set of objects that con-
sider a particular location l as the closest site (compared
with all existing sites in S), as discussed in Section 3.2. In
fact the concern of I/O efficiency exists throughout the de-
sign of the progressive algorithm. Other examples include
the methods to reduce the number of candidate locations
(Section 4), the lower-bound theorems (Section 5.3), and
the batch cell partitioning (Section 5.5). As described in
the performance section, we utilize the R*-tree spatial in-
dex and measures disk I/Os.

3. COMPUTINGAD(L)FOR A GIVEN LO-
CATION L

Before solving the min-dist optimal location query, we first
address the following problem: Given a candidate location
l, how do we compute the average distance AD(l) as defined
in Equation 1?

3.1 AD(l) Can be Computed From RNN(l)

Let’s first define AD as the average distance between every
object in O to its nearest site in S, without considering a
new site. That is:

AD =

∑
o∈O dNN(o, S) ∗ o.w∑

o∈O o.w
(2)

Clearly, ∀l ∈ Q, AD(l) ≤ AD. If no object in O is closer
to l than to its nearest site in S, AD(l) = AD. Otherwise,
AD(l) < AD.

To compute AD(l), by definition we could compute the
nearest site (including l) for every object, and then take
the average distance between an object to its nearest site.
But this is costly. Intuitively, if we add a new McDonald’s
store, we only want to visit the nearby residential buildings
to compute the new average distance. In fact, we only need
to visit objects in RNN(l), as shown in Theorem 1.

Theorem 1. AD(l) = AD −
1∑

o∈O o.w

∑

o∈RNN(l)

(dNN(o, S)− d(o, l)) ∗ o.w

Proof. From Equations 1 and 2, we have: AD −AD(l) =

1∑
o∈O o.w

∑
o∈O

(dNN(o, S)− dNN(o, S ∪ {l})) ∗ o.w.

Therefore, AD(l) = AD −
1∑

o∈O o.w

∑
o∈O

(dNN(o, S)− dNN(o, S ∪ {l})) ∗ o.w.

Notice that if o 6∈ RNN(l), dNN(o, S) = dNN(o, S ∪ {l}).
To prove the theorem, it remains to point out that for an
object o ∈ RNN(l), dNN(o, S ∪ {l}) = d(o, l).

645

Theorem 1 tells how to compute AD(l) for an arbitrary
location l. Compared with l which varies, S and O can
be considered as fixed. Therefore we can pre-compute AD,∑

o∈O o.w, and dNN(o, S) for every object. In order to
compute AD(l), we only need to find the RNNs of l and
compute d(o, l) for every o ∈ RNN(l).

3.2 The Computation of RNN(l)

To find the RNNs of l, we can compute the Voronoi cell of
l by examining S, and then locate the objects in O that are
spatially enclosed in the Voronoi cell. There exists plenty
of work on Voronoi cells, including the L1 distance case [5]
which we need.

However, existing work focused on computing the Voronoi
cell of l by examining all sites in S. This is expensive if too
many sites exist. Intuitively, it should be enough to examine
only the sites close to l. For the L2 distance, [9] proposed
a method to utilize a spatial index structure on the set of
sites to quickly identify some sites close to l and compute a
range in space, with the guarantee that all sites outside the
range can be avoided. We extended this idea to deal with L1

metric. Due to the space limitation, the L1 distance method
is included in the full version of our paper [12].

4. LIMITING THE NUMBER OF CANDI-
DATES

If we have only a few candidate locations to choose from,
we could compute their AD(·) using the method in Sec-
tion 3, and then pick the location with the smallest AD(·).
The challenge of solving the min-dist optimal-location query
lies in the fact that there are too many candidate locations
in the query region Q. In fact, theoretically a region con-
tains an infinite number of locations. This section limits the
number of candidate locations that need to be checked, yet
still guarantees that an exact answer is found.

4.1 The Number of Candidate Locations is Fi-
nite

Consider Figure 3. The black dots are the objects. Here
the thick-bordered rectangle is the query region Q. The
shadowed region is composed of a horizontal extension of Q
and a vertical extension of Q, which are defined below.

Definition 2. Given an axis-parallel rectangle Q, the hor-
izontal extension of Q is the area derived from infinitely
extending Q horizontally. The vertical extension of Q is
the area derived from infinitely extending Q vertically.

Obviously, the intersection between the horizontal exten-
sion and the vertical extension is Q itself.

Figure 3: The candidate locations are limited to the
intersections of the dashed lines.

Consider each horizontal line that passes through at least
one object in the horizontal extension of Q and each vertical
line that passes through some object in the vertical extension
of Q. Also consider the horizontal and vertical lines that
pass through the corners of Q. For instance, in Figure 3
there are six such vertical lines and five such horizontal lines
as shown in dashed style. (Note that one line may pass
through more than one object.) They make 30 intersection
points. According to Theorem 2 below, even though there is
an infinite number of locations in Q, we only need to check
these intersection points. It is guaranteed that we can find
a min-dist optimal location among them.

Theorem 2. Consider the set of horizontal (and verti-
cal) lines that go through some object in the horizontal (and
vertical) extension of Q or go through some end point of Q.
There exists a min-dist optimal location at some intersection
point of these lines.

Proof. Consider RNN(l): the set of objects in O that
are closer to l than to their nearest sites in S. Let’s start
with a simple case as illustrated in the figure below, where
the objects in RNN(l) as well as l are all located in a hori-
zontal line. Further, assume all objects have weight = 1.

δ

l l’

Since all the objects in RNN(l) consider l as the nearest
site, we have dNN(o, S ∪{l}) = d(o, l). Therefore, the total
contribution of such objects to the numerator of AD(l) (in
Equation 1) is the sum of distances from each object to l.
This total is the summation of two parts: the total distance
between l and the objects to its left, and the total distance
between l and the objects to its right.

Without loss of generality, assume there are more objects
in RNN(l) to the right of l than to its left. Let’s move l a
little bit to its right side without passing any object, while
assuming RNN(l) remains the same during this move. We
argue that this can only improve AD(l), i.e. make it smaller.
Let there be nL objects to the left of l, and nR objects to the
right of l. If we move l to l′ where the moving distance is δ,
the increase of the total distance between l and the objects
to its left is nL ∗ δ, while the decrease of the total distance
between l and the objects to its right is nR ∗ δ. Since we
assume nL < nR, the decrease amount is more than the
increase amount. Therefore AD(l′) < AD(l).

This tells us that by moving l to the side with more ob-
jects, AD(l) always decreases. One may wonder when we
can reach the minimum AD(l). The answer is: either when
there are equal numbers of objects to the left and right of l,
or when we reach a border of the query region Q (remember
l should be inside Q). To make sure there are equal numbers
of objects to the left and to the right of l, we should make
sure that l co-locates with the median object. If the num-
ber of objects is even, any location between the two median
objects is optimal, including the location of each of these
two median objects. In any case, the theorem is correct,
i.e. there exists an optimal location either at the same X
coordinate as some existing object, or at the smallest (or
largest) X coordinate of Q.

The discussion above was based on the following assump-
tions:

646

Notation Meaning
S the set of sites
O the set of objects
Q the query region
l a candidate location for a new site

d(p1, p2) the L1 distance between two points
dNN(o, S) the L1 distance between object o to its nearest site in S
RNN(l) the set of objects in O that are closer to l than to their nearest sites in S
AD(l) the average distance between an object in O to its nearest site in S ∪ {l}
AD the average distance between an object in O to its nearest site in S

V CU(R) the Voronoi cell union of R with regard to S

Table 1: Summary of Notations.

1. When moving l (to l′), the set of RNNs remains un-
changed.

2. All objects have weight = 1.

3. The object placement is one-dimensional.

To make the proof complete, let’s drop all these assump-
tions and see why the theorem is still correct.

To drop Assumption 1, we acknowledge that it is possible
to have RNN(l) 6= RNN(l′). But this does not affect the
correctness of the theorem for the following reasons. Let
object o ∈ RNN(l) but o 6∈ RNN(l′). The distance between
o to its nearest site is smaller than what we counted under
Assumption 1. Therefore the real AD(l′) should be even
smaller, and thus moving l (to l′) remains to improve AD(l).
The same discussion applies to the case when o 6∈ RNN(l)
but o ∈ RNN(l′).

To drop Assumption 2, let there be objects whose weight
is more than 1. In the problem definition we said the weight
of objects should be positive integers like the number of
people living in a residential building. The proof of the
theorem remains valid if we consider every object o to be
multiple objects with weight 1, where the number of copies
should be o.w.

To drop Assumption 3, let’s consider the 2-dimensional
case. We can prove the theorem by moving l first horizon-
tally and then vertically. Consider the objects in RNN(l).
Let there be nL objects whose X coordinates are smaller
than that of l, and nR objects whose X coordinates are big-
ger than that of l. Assume nL < nR. We claim that by
moving l a little bit to the right side will improve AD(l)
for the following reason. We know the L1 distance between
two points is their horizontal distance plus their vertical
distance. If we move l horizontally, the vertical distance
between an object to l remain unchanged. Therefore, ac-
cording to our discussion in the one-dimensional case, we
get a smaller AD(l) since the total horizontal distance is
smaller. Next, we move l vertically. And the discussion is
the same as in the horizontal case.

4.2 Further Limiting the Number of Candi-
date Locations

According to Theorem 2, to get the set of candidate lo-
cations, we considered all objects in either the horizontal
extension or the vertical extension of Q. In fact, if we study
the theorem proof carefully, we can notice that there is no
need to consider all such objects. Instead, we only need to
consider the objects which belong to RNN(l) for some loca-
tion l in Q. Here we introduce a concept called the Voronoi

cell union and discuss how it can be used to further limit
the number of candidate locations.

Definition 3. Given a set of sites S and a spatial region
Q, the Voronoi cell union of Q with regard to S is the
union of Voronoi cells of every location l in Q.

Let’s use V CU(Q) to denote the Voronoi cell union of Q.
V CU(Q) is the minimum spatial region that fully contains
the Voronoi cell for every location l in Q. An equivalent
explanation is that V CU(Q) is a spatial region consisting of
the locations which may consider a new site built somewhere
in Q as the nearest site.

For ease of reference, Table 1 summarizes the variables
that have been introduced.

Figure 4: The candidate locations are further re-
duced using V CU(Q).

The V CU concept can help reduce the number of candi-
date locations in the following way. When choosing objects
which will define the vertical and horizontal lines (whose
intersections are the candidates), we only need to choose
the objects in V CU(Q). For example, in Figure 4, let the
dashed polygon be V CU(Q). We only need to consider the
objects in the shadowed region which is the intersection be-
tween V CU(Q) and the vertical/horizontal extensions of Q.
In this example, there are now four horizontal lines and four
vertical lines, which result in 16 candidate locations instead
30. Think the whole space as the United States, and the
query region as a city. The range V CU(Q) is typically a
small extension of Q, and therefore the savings of this opti-
mization may be big in practice.

We develop a method which efficiently computes V CU(Q).
Similar to the case of computing the Voronoi cell of a single
location, our method only needs to examine a small subset
of sites in S. The sites too far away from Q or located in-
side Q, do not need to be examined. The algorithm [12] is
omitted in this paper due to the space limitation.

647

5. THE PROGRESSIVE ALGORITHM
We now have an algorithm to accurately compute a min-

dist optimal location. That is:
Algorithm MDOL basic

1. Retrieve the objects in the intersection between VCU(Q)

and the horizontal/vertical extensions of Q.

2. Derive the set of candidate locations.

3. Compute the average distance AD(l) for every candi-
date location l.

4. Return the candidate location with the minimum av-
erage distance.

This is a fine algorithm if the number of candidate loca-
tions is small. However, if there are too many candidate
locations, the basic algorithm is not efficient.

5.1 The Progressive Algorithm Outline
We hereby introduce a progressive algorithm. The idea is

illustrated in Figure 5. Here we see five horizontal lines and
five vertical lines that partition the query region Q. They
make 25 intersection points as candidate locations. It is eas-
ily imaginable that in practice the number of candidate lo-
cations is much more. Assume we cannot check the average
distance for all of these candidate locations together. What
we do is we first partition Q at a coarse granularity, which re-
sults in a subset of candidate locations as illustrated in Fig-
ure 5(a). The average distance AD(l) is calculated for each
of such candidate locations. The location with the small-
est AD(l) is returned to the user as a temporary optimal
location. Next, we go to a finer partitioning and introduce
more candidate locations (Figure 5(b)). A better temporary
optimal location may be returned to the user. Eventually, if
we go to the finest partitioning, we will check all candidate
locations and will find the accurate optimal location.

I

(b) level 2(a) level 1 (c) level 2 with pruning

II

IIIIV

Figure 5: The main idea of the progress algorithm.

One may wonder: “the description above still checks all
candidate locations, so what do you save?” Well, the de-
scription is a skeleton of the algorithm, and we will enhance
it by providing a lower-bound computation facility. That is,
with a coarse partitioning, the query region Q is partitioned
into multiple cells (e.g. I, II, III, and IV in Figure 5(a)).
For each cell C, we can compute a lower bound of AD(l)
for all locations in C, denoted as LB(C). Empowered with
this lower-bound computation facility, our algorithm has the
following two abilities:

• We may prune complete cells. Let C be a cell, and
l be a candidate location that has been checked. If
LB(C) ≥ AD(l), we know no location in cell C can
reach a lower average distance than that of l. There-
fore the computation of all candidate locations in C
can be avoided (Figure 5(c)).

• Along with a temporary optimal location that is re-
ported to the user, our algorithm can report a range
of average distance values. For instance, our algo-
rithm may not only report a temporary optimal lo-
cation whose average distance is 3000 (meters), but
also claim that the the average distance of the real
optimal location should be in the range [2500,3000].
Notice that with new iterations, this range can only
be shrunk. The next iteration may report a new lo-
cation with range [2800, 2900]. This ability gives the
user a choice of stopping at an accurate-enough ap-
proximate result, in case the accurate answer takes a
long time to finish.

5.2 The Data-Independent Lower-Bound
Given a cell C our task is to compute a lower bound of

AD(l) for all locations l in C. At this point, we know AD(ci)
for the four corners ci of C, and we know the perimeter of C.
But let’s assume we know no further information. That is,
we do not assume any knowledge of sites in S or objects in
O. Such a lower bound is called data-independent. With the
help of Lemma 1, Corollary 1 shows a first data-independent
lower bound, and Theorem 3 gives a better (tighter) one.
In the next section we will provide a data-dependent lower
bound.

Lemma 1. For any two locations l and l′, AD(l′)−AD(l) ≤
d(l, l′).

Proof. We know AD shows the average distance be-
tween an object to the nearest site in S. If a new site is built,
either at l or l′, this average distance may be improved. For
an arbitrary object o, let’s consider the difference in ben-
efit: how much more its distance (to the nearest site) can
benefit from l than from l′. This difference in benefit is
(dNN(o, S)−dNN(o, S ∪{l}))− (dNN(o, S)−dNN(o, S ∪
{l′})) = dNN(o, S ∪ {l′}) − dNN(o, S ∪ {l}). Notice that
AD(l′)−AD(l) is the average of such a difference in benefit.
We will differentiate two cases to show that this difference
in benefit is never more than d(l, l′). And that will finish
the proof of the lemma.

If o 6∈ RNN(l), it does not help o by building a new site
at l, i.e. dNN(o, S ∪ {l}) = dNN(o, S). Since dNN(o, S ∪
{l′}) ≤ dNN(o, S), the difference in benefit is less than or
equal to 0, which in turn is less than or equal to d(l, l′).

If o ∈ RNN(l), the difference in benefit is dNN(o, S ∪
{l′})−d(o, l). Since dNN(o, S∪{l′}) ≤ d(o, l′), the difference
in benefit is no more than d(o, l′)− d(o, l) ≤ d(l, l′).

This lemma leads to a straightforward lower bound of a
cell given by the following corollary:

Corollary 1. Let the corners of a cell C be c1, c2, c3,
and c4. Let the perimeter of C be p.

min
1≤i≤4

{AD(ci)} − p

4

is a lower bound of AD(l) for any location l ∈ C.

Proof. Consider an arbitrary location l ∈ C. Let ck

be its nearest corner. According to Lemma 1, we have:
AD(l) ≥ AD(ck)− d(l, ck). It is obvious that d(l, ck) ≤ p/4
and AD(ck) ≥ min1≤i≤4{AD(ci)}. So we have

AD(l) ≥ min
1≤i≤4

{AD(ci)} − p

4
.

648

Now we get a lower bound. However, we can do bet-
ter. Theorem 3 below shows a tighter (larger) lower bound,
which may lead to more pruning power.

Theorem 3. Let the corners of a cell C be c1, c2, c3, and
c4, where c1c4 is a diagonal. Let the perimeter of C be p.

max{AD(c1) + AD(c4)

2
,
AD(c2) + AD(c3)

2
} − p

4
(3)

is a lower bound of AD(l) for any location l ∈ C.

Proof. Due to symmetry, it is sufficient to prove that
the following formula holds for every location l ∈ C,

AD(l) ≥ AD(c1) + AD(c4)

2
− p

4
.

According to Lemma 1, we know:

AD(l) ≥ AD(c1)− d(l, c1)

AD(l) ≥ AD(c4)− d(l, c4)

Therefore, we have:

AD(l) ≥ AD(c1) + AD(c4)

2
− d(l, c1) + d(l, c4)

2
.

It remains to point out that d(l, c1) + d(l, c4) = p/2 holds
for any l ∈ C.

Figure 6 illustrates the superiority of this new lower bound
over the previous one. Based on Corollary 1, we get a lower
bound 1000 − p/4. Theorem 3 shows a better lower bound
3500− p/4.

1 AD(c)=30002

AD(c)=40003 AD(c)=25004

AD(c)=1000

Figure 6: The lower bound in Theorem 3 is 3500−p/4,
which is better than 1000 − p/4, the lower bound in
Corollary 1.

5.3 The Data-Dependent Lower-Bound
If we know some information about the objects O and the

sites S, we may be able to get a tighter lower bound. In
the extreme case, if we know all the exact information of
O and S, we can compute the exact optimal location. In
this section, we will derive a meaningful lower bound (in
Theorem 4), assuming no knowledge of O or S except two
values:

∑
o∈O o.w and

∑
o∈V CU(C) o.w. The former value

is the total weight of objects in the whole space, which can
be assumed known. The latter value can be acquired by
computing the region V CU(C) and then performing an ag-
gregation query on the (index of the) set of objects.

Lemma 2. Given any two locations l and l′ on space,

AD(l)−AD(l′) ≤
∑

o∈RNN(l′) d(l, l′) ∗ o.w∑
o∈O o.w

.

Proof. For clarity, we can assume every object has weight
= 1. This does not lose generality because an object o whose
weight o.w > 1 can be treated as o.w objects, each of which

having weight = 1. Therefore what we need to prove be-
comes:

AD(l)−AD(l′) ≤ |RNN(l′)|
|O| d(l, l′)

where |O| and |RNN(l′)| are the numbers of objects in O
and RNN(l′), respectively.

According to the definition of AD(l) and AD(l′), we have:

AD(l)−AD(l′) =
1

|O|
∑
o∈O

(dNN(o, S∪{l})−dNN(o, S∪{l′})).

We divide the summation into two cases, one for those o ∈
RNN(l′) and one for those o 6∈ RNN(l′).

We know

dNN(o, S ∪ {l′}) =

{
d(o, l′), if o ∈ RNN(l′)
dNN(o, S), if o 6∈ RNN(l′)

and we know

dNN(o, S ∪ {l}) ≤ dNN(o, S)

dNN(o, S ∪ {l}) ≤ d(o, l).

Therefore, AD(l)−AD(l′)

=
1

|O|
∑

o∈RNN(l′)

(dNN(o, S ∪ {l})− dNN(o, S ∪ {l′}))

+
1

|O|
∑

o6∈RNN(l′)

(dNN(o, S ∪ {l})− dNN(o, S ∪ {l′}))

=
1

|O|
∑

o∈RNN(l′)

(dNN(o, S ∪ {l})− d(o, l′))

+
1

|O|
∑

o6∈RNN(l′)

(dNN(o, S ∪ {l})− dNN(o, S))

≤ 1

|O|
∑

o∈RNN(l′)

(d(o, l)− d(o, l′))

+
1

|O|
∑

o6∈RNN(l′)

(dNN(o, S)− dNN(o, S))

=
1

|O|
∑

o∈RNN(l′)

(d(o, l)− d(o, l′))

≤ 1

|O|
∑

o∈RNN(l′)

d(l, l′)

=
|RNN(l′)|

|O| d(l, l′)

Intuitively, the lemma above can be explained as follows:
(AD(l)−AD(l′)) ∗ |O| is the total extra benefit of distances
to the nearest sites for all objects by building a new site at
l′ instead of l. The objects which may benefit more from
l′ than from l are those objects within RNN(l′). For each
of such object, the maximal extra saving is no more than
d(l, l′). Therefore, the total extra saving is no more than
d(l, l′) ∗ |RNN(l′)|. Based on this lemma, we can prove
the following lower bound, which is better than the data-
independent lower bound we got before.

649

Theorem 4. Let the corners of a cell C be c1, c2, c3, and
c4, where c1c4 is a diagonal. Let the perimeter of C be p.

max{AD(c1) + AD(c4)

2
,
AD(c2) + AD(c3)

2
}−

p ∗∑
o∈V CU(C) o.w

4 ∗∑
o∈O o.w

is a lower bound of AD(l) for any location l ∈ C.

Proof. Once again, we can assume every object has weight
= 1 without loss of generality. It is sufficient to prove that

AD(c1) + AD(c4)

2
− p ∗ |V CU(C)|

4 ∗ |O|
is a lower bound.

According to Lemma 2, we have

AD(c1)−AD(l) ≤ |RNN(l)|
|O| d(l, c1)

or

AD(l) ≥ AD(c1)− |RNN(l)|
|O| d(l, c1).

Similarly,

AD(l) ≥ AD(c4)− |RNN(l)|
|O| d(l, c4).

Therefore, we have: AD(l)

≥ AD(c1) + AD(c4)

2
− |RNN(l)|

|O|
d(l, c1) + d(l, c4)

2

=
AD(c1) + AD(c4)

2
− |RNN(l)|

|O|
p

4

It remains to point out that since l is in cell C, |RNN(l)| ≤
|V CU(C)|.

Typically,
∑

o∈V CU(C) o.w is much smaller than
∑

o∈O o.w.

Therefore the data-dependent lower bound given in The-
orem 4 is generally much better (larger) than the data-
independent lower bound given in Theorem 3.

5.4 The Algorithm
Now that we have confidence in computing a lower bound

on AD(l) for locations l in any cell C, we are ready to provide
the progressive algorithm. Let LB(C) represent the data-
dependent lower bound for cell C.

Algorithm MDOL prog

1. Retrieve the objects in the intersection between VCU(Q)

and the horizontal/vertical extensions of Q. Derive the
set of horizontal and vertical lines, whose intersections
are the candidate locations.

2. Maintain a heap of cells ordered by LB(·). Initially,
the heap contains one cell: the query region Q.

3. Set lopt be the corner of Q with minimum AD(·).
4. If the heap is empty, or if AD(lopt) ≤ the minimum

LB(·) of cells in the heap, return lopt as the optimal
location.

5. Remove the cell C from the heap with minimum LB(·).
6. If C cannot be partitioned, goto Step 4.

7. Partition C into a set of k sub-cells.

8. Compute AD(·) for the corners of all sub-cells, if not
computed already. If any corner ci has AD(ci) <
AD(lopt), set lopt = ci.

9. Compute the lower bound LB(·) for every sub-cell us-
ing Theorem 4.

10. For every sub-cell Ci where LB(Ci) < AD(lopt), insert
Ci into the heap.

11. goto Step 4.

The algorithm contains initialization (Steps 1, 2, 3) and a
loop (Steps 4 through 11). It maintains a heap of cells, and a
temporary optimal location lopt. Initially, the heap has one
cell: Q. And the temporary optimal location is initialized
to be the corner of Q with minimum AD(·). Later on, each
iteration removes a cell from the heap and partitions it into
sub-cells which will be re-inserted into the heap.

To fully understand the algorithm, let’s discuss several
key points of it below, and discuss the cell-partitioning issue
in Section 5.5.

5.4.1 Cell Pruning using Lower Bound
Along with each cell C, we keep its lower bound LB(C).

It is a lower bound of AD(l) for every location l in C. There-
fore, if LB(C) ≥ AD(lopt), we know no location in C can be
a better candidate than the current temporary optimal loca-
tion lopt. So as Step 10 of the algorithm shows, we can prune
the examination of a cell Ci (and all candidate locations in
it) if LB(Ci) ≥ AD(lopt).

5.4.2 Continuous Refinement of the Query Result
One feature of the algorithm is that it can quickly report a

temporary optimal location, along with its confidence inter-
val, and it can keep refining the result. When the algorithm
terminates, the real optimal location can be found. But the
user reserves the flexibility of aborting the execution at any
time when the quality of the temporal optimal location is
high enough (as indicated by the confidence interval). This
feature can be helpful especially when the data volume is
large and the algorithm takes a long time to terminate.

The confidence interval is [ADlow, ADhigh]. Here ADlow

is the minimum LB(Ci) for all cells in the heap, and ADhigh

= AD(lopt). Let the real optimal location be lrealopt. It is
guaranteed that AD(lrealopt) ∈ [ADlow, ADhigh] is true at
all times. Therefore, the shorter this interval is, the more
confident we are on the temporary optimal location. When
the algorithm terminates, the confidence interval shrinks to
a single point, and we are certain that we have found the
real optimal location.

Once the algorithm starts to run, as time passes by the
confidence interval shrinks. On the left side, ADlow keeps
increasing. This is because when we remove a cell C from
the heap (Step 5) and partition it to sub-cells (Step 7) to
be inserted to the heap (Step 10), we know LB(Ci) of any
sub-cell Ci is at least as large as LB(C). On the right side,
ADhigh keeps decreasing. This is because we only replace
lopt with a better candidate location. In summary, the algo-
rithm reports better and better candidate locations whose
confidence intervals keeps improving.

5.4.3 The Stopping Condition
Step 4 shows two stopping conditions. If the heap is

empty, there is no unprocessed cell and therefore there is no
more candidate location to examine. So the temporal opti-
mal location is really optimal. Another condition is when all
cells in the heap have LB(·) at least as large as AD(lopt). In

650

this case, no candidate location in any cell in the heap can be
better than lopt, and therefore the algorithm can terminate.

One may wonder: “Step 10 has ensured that we only insert
a cell Ci into the heap when LB(Ci) < AD(lopt). So how can
it happen that the heap contains some cell whose LB(·) ≥
AD(lopt)?” The answer is that AD(lopt) shrinks as better
and better temporary optimal location is found. Therefore it
is quite possible that some prunable cell was validly inserted
to the heap based on an old AD(lopt).

This observation tells us an additional thing we could
do (not specified in the algorithm). That is, whenever lopt

changes, we remove from the heap every cell Ci where AD(Ci)
≥ AD(lopt). This additional cost of eager removal can help
us keep the heap compact at all times. However, we tend
not to implement this eager removal for the following rea-
son. This operation will remove some cells with the largest
LB(·). Because the heap is optimized to extract a cell with
minimum LB(·), it is costly to remove from the other end.

5.5 Batch Cell Partitioning
When a cell C with the smallest LB(·) is removed from

the heap (Step 5), Step 7 of the algorithm MDOL prog sim-
ply said “Partition C into a set of sub-cells”. This section
addresses the issue how to partition. In fact, we directly
address the extended problem, when multiple cells may be
chosen to partition together.

The motivation is that to insert a sub-cell Ci into the
heap, we need to access the indices storing O and S (in order
to compute V CU(Ci), LB(Ci), and non-computed AD(·)
for the corners of Ci), which can be expensive. Therefore
we want to batch the access. In other words, we want to
compute the associated information for multiple sub-cells
together, for each access to the indices of O and S.

The number of new cells to process depends on the avail-
able memory. In the extreme case when we had unlimited
memory, we could partition Q to the finest level and com-
pute everything by visiting the indices of O and S once. In
practice, the allowed number of new cells to process together
is not infinity. We therefore face the following design prob-
lems, assuming we can process k (denoted as partitioning
capacity) new cells together:

1. Which cells shall we partition? How many sub-cells
shall we partition each cell into?

2. Given a particular cell and the number of sub-cells we
aim at partitioning it into, how to partition it?

5.5.1 Solution for Design Problem One
In order to increase the minimum LB(·), we should def-

initely partition the cells whose LB(·)’s are the smallest
among all cells in the heap. Moreover, it may not be good
enough to only partition the cells whose LB(·)’s are equal
to the minimum LB(·) – what about a cell whose LB(·) is
slightly larger? In general, we want to distribute k to mul-
tiple cells, and the smaller LB(C) is, the more sub-cells we
partition C into.

We hereby propose a scheme, where the number of sub-
cells of C is proportional to 1/LB(C). Let C1, . . . , Ct be the
set of t cells in the heap with the smallest LB(·), where t
is a pre-defined constant. For every cell Ci, we partition it
into NSC(Ci) sub-cells.

NSC(Ci) =
k

LB(Ci)
∑t

j=1
1

LB(Cj)

(4)

It can be verified that

t∑
i=1

NSC(Ci) = k

NSC(Ci)

NSC(C′i)
=

1/LB(Ci)

1/LB(C′i)

Example: Let t = 4, LB(C1) = 10, LB(C2) = 10,
LB(C3) = 100, and LB(C4) = 100. Let k = 44. We have:

t∑
j=1

1

LB(Cj)
=

1

10
+

1

10
+

1

100
+

1

100
= 0.22

and then:

NSC(C1) = NSC(C2) =
44

10 ∗ 0.22
= 20

NSC(C3) = NSC(C4) =
44

100 ∗ 0.22
= 2.

5.5.2 Solution for Design Problem Two
Suppose we aim at partitioning a cell C into k′ sub-cells.

We need to know how to partition. There are two sub-
problems here. First, we need to decide how many parti-
tions we should make for the X axis, and how many for the Y
axis. Second, we need to choose the vertical and horizontal
lines. What guides our design choices in both sub-problems
is that we should try to:

• Make sub-cells have similar sizes (or perimeters).

• Make sub-cells be square-shaped.

The reason why we try to make sub-cells have equal sizes
is: if some sub-cell has very small sizes and some others have
very large sizes, the ones with large sizes, or large perimeter
p, may have very small LB(·) (according to Theorem 4),
contradictory to our goal of increasing LB(·) of cells in the
heap as much as possible.

3

3

(a) partitioning into square-like cells

9

1

(b) partitioning into thin and long cells

Figure 7: Partitioning into square-like cells results
in sub-cells with perimeter 12, while partitioning
into thin and long cells results in sub-cells with
perimeter 20.

The reason why we try to have square-shaped sub-cells is
illustrated in Figure 7. Here cell C has hu = 9 horizontal
units and vu = 3 vertical units. That is, if we partition C
into the finest level, we will get 9*3=27 sub-cells. Our goal

651

is to partition C into k′ = 3 sub-cells. Figure 7(a) partitions
C into 3 square-like cells, where each cell has perimeter p =
(3 + 3) ∗ 2 = 12. On the other hand, Figure 7(b) partitions
C into 3 thin-and-long cells, where each cell has perimeter
p = (1 + 9) ∗ 2 = 20. According to Theorem 4, even though
both approaches partition C into equal number of sub-cells,
the former approach tends to produce a partitioning with
larger LB(·) for every sub-cell.

Therefore, we should aim at having

nx

ny
=

w

h

where nx is the number of resulted partitions on the X axis
(of C), ny is the number of resulted partitions on the Y axis,
w is the width of C, and h is the height of C.

On the other hand, since we aim at partitioning C into k′

sub-cells, we have

nx ∗ ny = k′

As a result:

nx =

√
w · k′

h
, ny =

√
h · k′

w
(5)

The above equation has solved the first sub-problem in
determining the number of partitions in X and Y . Let’s
now tackle the second sub-problem on how to partition. Due
to symmetry we focus on the X dimension. The task is to
choose nx− 1 vertical lines (so as to create nx partitions for
the X range of C). As Figure 8 shows, we should partition in
such a way that each partition has roughly the same width.

51 2 3 4 76

Figure 8: To create nx partitions (in the X axis), the
thick vertical lines show a method of leaving each
partition with equal number of unprocessed lines.
A better choice is to choose vertical lines 1, 2 and
5, to make each partition have the same width.

Clearly, the nx − 1 hypothetical lines that form an equi-
width partitioning (of the X range of C) may not co-locate
with existing vertical lines. A straightforward approach is to
first compute the equi-width lines, and then for every equi-
width line choose the closest existing vertical line. However,
as Figure 9 shows, the approach may not work, since mul-
tiple equi-width lines may correspond to the same existing
vertical line. In the example, both the second and the third
equal-width lines consider line 5 as the closest existing line.
To solve this problem, we process one equi-width line at a
time, from left to right. For each such line, we assign it to
the closest vertical line not assigned to any previous one yet.
After processing each equi-width line, we check to make sure
that the number of remaining vertical lines ≥ the number of
remaining equi-width lines. If the condition is not met, the
remaining equi-width lines are matched with the right-most
existing vertical lines. As an example, in Figure 9, after
associating vertical line 4 with the first equi-width line, the
above condition is not met. Therefore the last two equi-
width lines are associated with the last two existing vertical
lines (4 and 5). And in turn line 3 is chosen to be associated
with the first equi-width line.

51 2 3 4

Figure 9: Matching every equi-width line (shown as
a dashed line) to the closest existing vertical line
may not work.

6. PERFORMANCE
In this section we experimentally evaluate our algorithm

and optimizations. We use a real dataset: the 123,593 postal
addresses in northeastern part of the United States (New
York, Philadelphia and Boston). The dataset is available
at the R-tree Portal [11]. For each experiment, given the
number of sites, we randomly select some data points as
the sites and use the rest as the objects. The objects are
stored in an R*-tree, augmented by the L1 distance from
each object to its nearest site. The pagesize of the R*-tree
is 4KB. In real applications, the number of sites is typically
very small. So, in our experiments, we keep all sites in
memory. However, the sites can be organized as an R*-tree
and our algorithm still applies. In each experiment, we issue
100 random queries with fixed size, and take their average
running time. We use a buffer of size 128 pages and measure
the total disk I/Os to the object R*-tree. All experiments
are performed on a Dell Pentium IV 3.2GHz PC with 1GB
memory. Unless otherwise stated, the experiments use the
default parameters as given in Table 2.

Parameter Default value
Number of sites 100

Query size 1% in each dimension
Partitioning capacity (k) 40

Table 2: The default parameters.

6.1 The Effect of VCU Computation
We first verify that computing the VCU of the query range

significantly reduces the number of candidate locations. As
Figure 10 shows, computing VCU reduces the number of
candidates by about two orders of magnitude. The number
of candidates are roughly proportional to the area of the
query range for both cases. Thus, in Figure 10, two lines in-
crease almost at the same rate when the query size increases.
In the rest of experiments, we always compute VCU of the
query range.

6.2 Comparison of the Three Lower Bounds
We have proposed three versions of lower bounds of AD(l)

for all locations l in a cell C, as shown in Table 3.
To compare their pruning power, we implement three ver-

sions of the algorithm by using these three lower-bounds,
respectively. The query size is 0.25% in each dimension. Fig-
ure 11 shows the total disk I/Os and running time of these
three algorithms. When the number of sites increases, the
disk I/Os and running time of all three algorithms decrease,
and the gap between DDL and the other two methods also
decreases. This is because the VCU of a cell shrinks with

652

Figure 10: The effect of VCU computation.

Notation Lower bound Where
SL straightforward Corollary 1
DIL data-independent Theorem 3
DDL data-dependent Theorem 4

Table 3: The three lower bounds.

more sites and we have fewer candidates. Thus, the number
of candidates that need to be pruned also becomes smaller.
So DIL has a little better pruning power than SL, while
DDL is clearly superior than both of them. In other words,
the data-dependent lower bound has the strongest pruning
power.

6.3 Impact of Lower-Bound Pruning
To see how much improvement we can get by using lower-

bound pruning, we compare the query I/O performance be-
tween the naive algorithm (denoted as naive) which checks
all candidates, and the algorithm which prunes candidates
utilizing the data-dependent lower bound. As shown in Fig-
ure 12, using pruning can bring multiple orders of magni-
tude performance improvement. This is because, with the
increase of the query size and the number of candidates, the
difference between Naive and DLL in the number of pruned
candidates becomes larger.

6.4 The Effect of Batch Partitioning
In this section, we examine how the batch partitioning af-

fects the performance. Figure 13 shows the total disk I/Os
with respect to the batch-partitioning capacity, i.e. the num-
ber of new sub-cells we introduce in a single run. When the
batch capacity increases, the total disk I/Os first decrease.
That is because, with a larger batch capacity, we can com-
pute more AD(·) and lower bounds at one time. However,
when the batch capacity is too large, the performance be-
comes worse. The reason is that the cells are divided into
too fine a granularity. Some disk I/Os are wasted on com-
puting the AD(·) and VCUs for those sub-cells, which could
be pruned by using a coarser granularity.

6.5 The Progressiveness
Our progressive algorithm quickly reports a temporary

optimal location, and keeps refining the result. In this sec-
tion we examine how fast the quality of the query result can
improve. Since queries are randomly generated, the optimal

(a) The total disk I/Os

(b) The total runtime

Figure 11: Comparison of the three lower bounds.

Figure 12: The impact of lower-bound pruning.

Figure 13: The effect of batch partitioning.

653

Figure 14: The progressiveness of our algorithm.

locations of different queries may have different AD(·) val-
ues. To measure the progressiveness in a unified way, we
normalize the result of each query as follows: the final re-
sult (i.e. AD(·) of the actual optimal location) is scaled to
be 0, the minimal AD(·) of the four corners of the query
range is scaled to be 1, and the initial lower bound of the
query range is scaled to be -1. After each batch process,
we get a new upper bound and lower bound as the inter-
mediate result. They are scaled to real numbers between
[-1,1]. We run 100 random queries with the default parame-
ters, take the first 100 steps for each run, scale them to the
[-1,1] range and report the average. The result is plotted in
Figure 14. The (scaled) upper bound approaches the actu-
ally result very fast. It will become less than 1% within 20
steps. The (scaled) lower bound, however, approaches the
actual result slower. It will become less than 1% in about
80 steps. (Here on average it takes an algorithm 200 steps
to find the exact answer.) It tells us that, in many cases, we
find a good approximation very fast, but it takes some time
to verify whether it is the actual real optimal location.

7. CONCLUSIONS AND FUTURE WORK
This paper proposed and solved the min-dist optimal-

location query. Even though there is an infinite number
of locations in a query range, we proved that under the
L1 metric we only need to check a finite number of can-
didates to get an exact answer. We then proposed a pro-
gressive algorithm, MDOL prog, that first partitions the
query range into some cells, and then recursively partitions
each cell into smaller cells. Since any candidate location is
the corner of some cell, by partitioning to the finest granu-
larity it is guaranteed that we can find the optimal location.
We introduced three lower-bound estimators which enable
the pruning of complete cells (and all candidate locations in
these cells). The lower-bound estimators provide the pro-
gressive nature of the algorithm, as results from earlier runs
can be used to prune the search space of later runs. Finally,
we proposed the batch-partitioning method. Experimental
results revealed that one of the three lower-bound estima-
tors, namely the data-dependent lower bound, is clearly bet-
ter than the other two, and that our progressive algorithm
MDOL prog is much more efficient than the naive algo-
rithm.

While this paper solved a real problem and may have
strong impact on corporate decision-support systems, it trig-
gers some other interesting problems. What if a franchise

plans to choose k > 1 locations together, whose overall im-
pact is optimal? What if one wishes to replace the L1 metric
with L2 metric or road-network distance? We plan to inves-
tigate these problems.

8. ACKNOWLEDGEMENT
Donghui Zhang was partially supported by NSF CAREER

Award IIS-0347600. Yufei Tao was partially supported by
Grant CityU 1163/04E from the Research Grant Council of
the HKSAR government.

9. REFERENCES
[1] M. de Berg, M. van Kreveld, M. Overmars, and

O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Sprinter Verlag, 1997.

[2] Y. Du, D. Zhang, and T. Xia. The Optimal-Location
Query. In SSTD, pages 163–180, 2005.

[3] L. E. Jackson. The Directional p-Median Problem
with Applications to Traffic Quantization and
Multiprocessor Scheduling. Ph.D. thesis, North
Carolina State University. http://www.csc.ncsu.edu/
faculty/rouskas/Ar0ra/Thesis/PHD-Jackson-2003.pdf,
2003.

[4] F. Korn and S. Muthukrishnan. Influence Sets Based
on Reverse Nearest Neighbor Queries. In SIGMOD,
pages 201–212, 2000.

[5] D. T. Lee and C. K. Wong. Voronoi Diagram in L1

(L∞) Metrics with 2-Dimensional Storage
Applications. SIAM Journal on Computing,
9:200–211, 1980.

[6] N. Megiddo and K. J. Supowit. On the Complexity of
Some Common Geometric Location Problems. SIAM
Journal on Computing, 13(1):182–196, February 1984.

[7] K. Mouratidis, D. Papadias, and S. Papadimitriou.
Medoid Queries in Large Spatial Databases. In SSTD,
pages 55–72, 2005.

[8] I. Stanoi, D. Agrawal, and A. El Abbadi. Reverse
Nearest Neighbor Queries for Dynamic Databases. In
ACM/SIGMOD Int. Workshop on Research Issues on
Data Mining and Knowledge Discovery (DMKD),
pages 44–53, 2000.

[9] I. Stanoi, M. Riedewald, D. Agrawal, and A. El
Abbadi. Discovery of Influence Sets in Frequently
Updated Databases. In VLDB, pages 99–108, 2001.

[10] Y. Tao, D. Papadias, and X. Lian. Reverse kNN
Search in Arbitrary Dimensionality. In VLDB, pages
744–755, 2004.

[11] Yannis Theodoridis. The R-tree-portal.
http://www.rtreeportal.org, 2003.

[12] D. Zhang, Y. Du, T. Xia, and Y. Tao. Progressive
Computation of The Min-Dist Optimal-Location
Query (full version). http://www.ccs.neu.edu/home/
donghui/publications/vldb06full.pdf, 2006.

654

